A Comparison of Two Guidance Strategies for Autonomous Vehicles

M. Boudali, R. Orjuela, M. Basset

Modeling, Intelligence, Process and Systems Laboratory (MIPS) Mulhouse - France

Journées Automatique et Automobile du GDR MACS - Amiens, 18-19 Octobre 2017

MOTIVATION

- 90% of the road accidents are due to the human errors.
- Road safety should be improved.
- Autonomous vehicles are considered as promising way for the Intelligent transportation systems.
- Lateral dynamic control should be improved.

OUTLINE

- 1. Dynamic vehicle modeling
- 2. Errors model
- 3. Control design
- 4. Simulation tests
- 5. Conclusion & Outlooks

DYNAMIC VEHICLE MODELING

Linear bicycle model is used for the controller synthesis.

Lateral vehicle dynamics

$$\sum M = L_f F_f - L_r F_r$$

DYNAMIC VEHICLE MODELING

Bicycle model

Input control

 ∂_f Front steering wheel-angle.

Output vector

- v_y Lateral velocity.
- ψ Yaw rate.

Remark

 v_{r} Longitudinal velocity is constant.

CoP position

Its position depends on the vehicle parameters

$$x_{cop} = \frac{I_z}{L_f m}$$

CoP position

Its position depends on the vehicle parameters

 $x_{cop} = \frac{I_z}{L_f m}$

The rear tire lateral force has two effects on the system dynamics

- a_y lateral acceleration along the body of the vehicle.
- $\ddot{\psi}$ angular acceleration around the vehicle's CoG.

CoP position

Its position depends on the vehicle parameters

 $x_{cop} = \frac{I_z}{L_f m}$

The rear tire lateral force has two effects on the system dynamics

- a_y lateral acceleration along the body of the vehicle.
- $\ddot{\psi}$ angular acceleration around the vehicle's CoG.

At the CoP, these two effects cancel each other out. $a_y^r - x_{cop}\ddot{\psi}^r = 0$

CoP position

Its position depends on the vehicle parameters

 $x_{cop} = \frac{I_z}{L_f m}$

The rear tire lateral force has two effects on the system dynamics

- a_y lateral acceleration along the body of the vehicle.
- $\ddot{\psi}$ angular acceleration around the vehicle's CoG.

Benefits

- Using the CoP allows to preview the lateral error (look ahead).
- Using the CoP does not require the knowledge of the rear tire lateral force.

- References
 - ψ_{ref} desired yaw angle. $\dot{\psi}_{ref}$ desired yaw rate.
- Orientation error $e_{\psi} = \psi - \psi_{ref}$
- CoG lateral error dynamic

 $\dot{e}_y = v_y + v_x e_\psi$

CoP lateral error dynamic

$$\dot{e}_{cop} = \dot{e}_y + x_{cop} \dot{e}_\psi$$

Remark

The contribution of the control input will be more important in the CoP case than in the CoG case due to the $R_l > 1$ term.

Remark

 ψ_{ref} acts on the error model as a disturbance.

SIMULATION TEST ON OPEN LOOP

Objective

 Compare the behavior of CoGM and CoPM in a lane departure situation.

Simulation Conditions

- Lane departure situation.
- Reference trajectory is straight line.
- Constant speed 15 m/s.
- Constant steering wheel angle 5 deg.

SIMULATION TEST ON OPEN LOOP

Objective

 Compare the behavior of CoGM and CoPM in a lane departure situation.

Simulation Conditions

- Lane departure situation.
- Reference trajectory is straight line.
- Constant speed 15 m/s.
- Constant steering wheel angle 5 deg.

Results

- The lateral error at the CoP is bigger than the lateral error at the CoG.
- The orientation errors are the same in both models.

CONTROL DESIGN

$$\frac{d}{dt}\xi(t) = A\xi(t) + B\delta_f(t) + \begin{bmatrix} 0\\d_2\\0\\d_4 \end{bmatrix} \dot{\psi}_{ref}$$

- ψ_{ref} desired yaw angle.
 ψ_{ref} desired yaw rate.

Proposed control law

 $\delta_f(t) = u_{FF}(t) + u_{FB}(t)$

- Feed-Forward aims to eliminate the effect of the disturbance on a part of the state vector.
- Robust State-Feedback aims to stabilize the system in closed loop and to attenuate the effect of the disturbance.

CONTROL DESIGN: FEED-FORWARD

• CoG Model

$$u_{FF}(t) = \frac{m}{C_f} \left(\frac{C_f L_f - C_r L_r}{m v_x} + v_x \right) \dot{\psi}_{ref}(t)$$
• CoP Model

$$u_{FF}(t) = \frac{m}{C_f} \left(R_l \frac{C_f L_f}{m v_x} + v_x \right) \dot{\psi}_{ref}(t)$$

CONTROL DESIGN: FEED-FORWARD

- CoG Model

$$u_{FF}(t) = \frac{m}{C_f} \left(\frac{C_f L_f - C_r L_r}{m v_x} + v_x \right) \dot{\psi}_{ref}(t) \qquad - CoP \text{ Model}$$

$$u_{FF}(t) = \frac{m}{C_f} \left(R_l \frac{C_f L_f}{m v_x} + v_x \right) \dot{\psi}_{ref}(t)$$

By applying the control law

$$\begin{split} \delta_{f}(t) &= u_{FF}(t) + u_{FB}(t) \\ \frac{d}{dt}\xi(t) &= A\xi(t) + Bu_{FB}(t) + Bu_{FF}(t) + \begin{bmatrix} 0 \\ d_{2} \\ 0 \\ d_{4} \end{bmatrix} \dot{\psi}_{ref} \quad \longrightarrow \quad \frac{d}{dt}\xi(t) &= A\xi(t) + Bu_{FB}(t) + \begin{bmatrix} 0 \\ 0 \\ 0 \\ d_{4} \end{bmatrix} \dot{\psi}_{ref} \end{split}$$

CONTROL DESIGN: ROBUST STATE FEEDBACK

$$\frac{d}{dt}\xi(t) = A\xi(t) + Bu_{FB}(t) + \begin{bmatrix} 0\\0\\0\\d'_4 \end{bmatrix} \dot{\psi}_{ref}$$

Robust state feedback action
$$u_{FB}(t) = -K\xi(t)$$

Objective

- Guarantee a decay rate exponential convergence α of the state vector $\xi(t)$. $\exists \alpha > 0: \quad \dot{V}(t) + 2\alpha V(t) < 0$
- Guarantee an attenuation level γ of the disturbance $\dot{\psi}_{ref}$ on the state \dot{e}_{ψ} .

 $||\dot{e}_{\psi}||_{2}^{2} < \gamma^{2} \left| \left| \dot{\psi}_{ref} \right| \right|_{2}^{2}$

Lyapunov candidate

$$V(t) = \xi^T(t) P \xi(t)^{\text{and}}$$

 $P = P^T > 0$.

CONTROL DESIGN: ROBUST STATE FEEDBACK

$$\frac{d}{dt}\xi(t) = A\xi(t) + Bu_{FB}(t) + \begin{bmatrix} 0\\0\\0\\d_4' \end{bmatrix} \dot{\psi}_{ref}$$

Robust state feedback action
$$u_{FB}(t) = -K\xi(t)$$

Objective

- Guarantee a decay rate exponential convergence α of the state vector $\xi(t)$. $\exists \alpha > 0: \quad \dot{V}(t) + 2\alpha V(t) < 0$
- Guarantee an attenuation level γ of the disturbance $\dot{\psi}_{ref}$ on the state \dot{e}_{ψ} .

$$||\dot{e}_{\psi}||_{2}^{2} < \gamma^{2} ||\dot{\psi}_{ref}||_{2}^{2}$$

Problem formulation

$$\begin{bmatrix} (A - BK)^T P + P(A - BK) + 2\alpha P + R^T R & PD' \\ (PD')^T & -\gamma I \end{bmatrix} < 0$$

Lyapunov candidate $V(t) = \xi^T(t)P\xi(t)^{\text{and}}$ $P = P^T > 0$.

Trade-off between

 α Large decay rate and $\gamma < 1$.

Double lane change maneuver

• The test consists in performing a double lane change maneuver at different speeds.

Simulation Conditions

- The track supposed to be flat.
- No vertical nor load transfer are considered.
- A 2D model is used for simulation purpose (with saturation on the lateral tire forces).

Double lane change maneuver

• The test consists in performing a double lane change maneuver at different speeds.

Simulation Conditions

- The track supposed to be flat.
- No vertical nor load transfer are considered.
- A 2D model is used for simulation purpose (with saturation on the lateral tire forces).

Robust state feedback design

- Controllers are designed at the constant speed $v_x = 25m/s$ (nominal speed).
- The LMI problem is programmed thanks to the Yalmip interface (Lofberg, 2004) coupled with the SeDuMi solver (Sturm, 1999).
- Decay rate $\alpha = 0.2$.
- Attenuation level $\gamma = 0.3$.

Simulation test at a different speed $v_x = 10m/s$.

-Using CoG strategy Using CoP strategy

Results

- Both strategies are robust with respect to the longitudinal speed variation.
- The CoP strategy still offers an effective trajectory tracking in terms of the lateral error.

CONCLUSION & OUTLOOKS

Conclusion

- The CoP strategy ensures a better trajectory tracking and anticipates the lateral position error.
- Both strategies are robust with respect to the longitudinal speed variation.

Future works

• Enhance the lateral stability in critical situation by using the CoP strategy.

THANKS FOR YOUR ATTENTION ! QUESTION ?

